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Abstract: Environmental restoration is a matter of national concern. Decades of abuse by industry, agriculture, and the military have
caused devastating contamination of the earth, air, and water. The Department of Energy alone will spend hundreds of billions of dollars
on containment and restoration. It is imperative that restoration costs are minimized. Every dollar spent on restoration is a dollar that will
not go toward research, a dollar that will not go to upgrade our nation’s infrastructure. The work presented here uses cost as a decision
variable in restoration projects. Contaminated sites frequently vary from one point to another in type and level of contamination. In
addition, a single piece of property may contain several distinct contaminated areas, each of which has characteristics unlike any of the
other areas. Thus one should look at optimizing the selection of remediation technologies to address the variation. A methodology has
been developed that will optimize the selection of remediation technologies based on cost. This methodology uses geostatistics and
dynamic programming to break a site into discrete cells and then select the optimal sequence of remediation technologies.
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Introduction

Environmental contamination has reached crisis levels in the
United States and in many other parts of the world. The legacy of
the Cold War is estimated to cost hundreds of billions of dollars to
clean up �U.S. Congress 1991�. Soil remediation planning some-
times pays little regard to the distribution of contaminants on the
site. If variation of contamination in the site is considered, then
we must select the best set of remediation technologies to use.
Further, it is difficult to use cost as a selection parameter for
remediation technologies. To address these shortcomings a meth-
odology has been developed that looks at a contaminated site as a
series of discrete blocks of contaminated soil followed by optimi-
zation of the technology selection. Dynamic programming is used
as the optimization method, and cost is the criteria to be mini-
mized. This paper details the development of the methodology,
and illustrates its application to a hypothetical site. The model,
SORTS �Soil Remediation Technology Selection�, allows the de-
cision maker to run sensitivity studies and to determine whether
the level of uncertainty in the cost estimates is significant to the
decision-making process.

Treatment of Remedial Investigation Data

Statistical methods used in engineering include regression, hy-
pothesis testing, and correlation. However, in classical correla-

tion, two different attributes are usually considered. In
remediation and other areas where spatial data are important, it is
important to investigate correlation between values of a single
attribute measured at different points in space. Geostatistics is a
specialized branch of statistics developed for estimation of ore
reserves that considers spatial distribution information. It can be
used to divide a site that has been randomly sampled into any
number of equally sized blocks. For each block, a central ten-
dency �mean� and a variance can be calculated. The variance of a
block depends on the variation between the independent samples
and the distance between sampling points.

This paper focuses on selection of technologies for remedia-
tion. Literature reviews and communications with industry per-
sonnel turned up no statistically based method of optimizing
technology selection for remediation and accounting for spatial
variation of contamination across a site when planning remedia-
tion projects.

Waste disposal pits and trenches can have considerable varia-
tion in type and level of contamination from one area to another.
Considering this and the fact that many remediation technologies
are quite specialized in their application, attention should be
given to the spatial variation in contamination. The method pro-
posed here could also be applied when there are several distinct
areas with differing characteristics.

The remedial investigation phase extensively characterizes the
site. Application of geostatistics to this characterization data will
allow the site to be divided into a number of discrete sectors or
cells. Once the site is divided into sectors, optimization algo-
rithms can be applied.

In order to develop an illustration of the concepts developed in
this research, a hypothetical site has been developed, based on
data from the DoE. Next, a set of candidate technologies was
selected based on EPA documents �USEPA 1988, 1990, 1991a,b�.
The technologies were chosen such that each contaminant could
be addressed by at least one technology. Further, each technology
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in the set is capable of treating one or more of the target contami-
nants in the site. Finally one technology, in situ vitrification, could
potentially be applied to the entire site. The chosen technologies
are: in situ vitrification �ISV�, soil vapor extraction �SVE�, rotary
kiln incineration, biodegradation, soil washing, stabilization/
solidification, and long-term monitored storage.

A detailed estimate of the costs was developed for each of the
seven technologies listed earlier. The estimates can be found in
Showalter et al. �1992� and Showalter �1994�.

Solution Algorithm

Dynamic programming was chosen over other possible optimiza-
tion methods. A general background on dynamic programming is
presented to develop the specific equations required. A small ex-
ample is solved using the method to illustrate key points.

Dynamic Programming

Dynamic programming �DP� was developed by Richard Bellman
at the RAND Corporation in the 1950s. DP is designed to handle
multistage decision processes, overcoming the shortcomings as-
sociated with linear programming, calculus of variations, and
other approaches to solving these problems. Most important, DP
was created from the beginning to be computationally feasible.
Although iterative methods such as DP may not be as elegant as
mathematical formulations, they can be much faster to formulate
and solve, and results may be easier to understand.

The primary use of DP in the field of civil engineering has
been for water resources management. It can handle nonlinear
constraints, and optimize stochastic models. There are many ex-
amples in the literature of planning optimal reservoir control,
where there are stochastic inflows, multiple objectives, and non-
linear constraints.

Principles of Dynamic Programming

The most important principle of DP is the principle of optimality,
stated as follows: Principle of Optimality. “An optimal policy has
the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision” �Bellman
1962�.

White �1969� restates this principle as “an optimal policy has
the property that all its contractions are optimal.” Thus if the
optimal path from point 1 to point N contains point j, then the
part of the path from 1 to j is also optimal. This allows piecewise
optimization and iterative methodologies to be implemented.

Advantages and Limitations of Dynamic Programming

One major advantage of dynamic programming is that it allows
the transformation of a single n-dimensional problem into n
one-dimensional problems. This greatly reduces the number of
equations to solve. The above-presented principle allows this
transformation.

A second advantage over other methods is that if DP finds a
minimum or maximum it will be a global one. Other methods of
finding optima can become stuck in relative �local� optima. For
example, the first derivative of a function being equal to zero is a
condition of the optimum, not proof.

DP can also handle nonlinear and discontinuous functions. Re-

quiring integer solutions or allowing negative decision variables
can also be formulated in a DP optimization. Integer variables can
even make DP more efficient.

The major limitation of DP is that if the dimensionality of the
state space becomes too large, the number of calculations be-
comes large also, and may exceed the limits of computation. This
is known as “the curse of dimensionality.”

Finally, DP is an approach to optimization. It is not a solution
method or algorithm. Dynamic programming is a way of looking
at optimization problems, and, as such, solutions may be more or
less difficult to formulate in DP than in other methods.

Functional Equations of Dynamic Programming

If we consider a set of points �Pi�, i=1 to N, and an associated
cost matrix �cij�, where cij =cost of moving from state �point� i to
state j �using i to represent Pi from now on�, then we can seek the
least cost path from 1 to N. The least cost from any point i to the
end is denoted by f�i�.

If we move from point i to point j, the cost is cij, and our
objective is to then move optimally from j to the end point. Re-
calling that the optimal cost from j to the end is f�j�, the cost
from i to j then optimally to the end is

cij + f�j� �1�

The functional equation is therefore

f�i� = min�cij + f�j�� �2�

This is the forward equation, used to decide where to move to
in the next step from whatever point i is now occupied. It can also
be written in the backward form as

f�i� = min�f�j� + cji� . �3�

Here we are deciding which point to move from to get to the
required step i.

A powerful feature of DP is that when a network is solved for
optimal control �also referred to as the optimal trajectory�, it also
gives the optimal control at every state in the process. This is
known as “invariant imbedding.” As the optimal control at every
stage and state is known, if there is deviation from the optimal
trajectory, the optimal control for the remaining stages is already
known.

Let us introduce slightly different terminology. S will refer to
the entire set of candidate technologies, ISV, SVE, in situ biore-
mediation, and soil washing. The particular technology being
considered at a particular stage will be referred to as j, and J will
refer to the technologies �if any� already mobilized. The function
will now be f ij�J�, meaning the optimal cost of using Technology
j at Stage i given that the set of Technologies J has been already
mobilized. As this formulation is solved from the end of the
project to the beginning it is not known at any point in the solu-
tion which technologies have been previously mobilized. The
equation is

f ij�J� = cij + min�f i−1�J � j�� + �mdj if j not mobilized

0 if j mobilized
�

�4�
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Model Development

Remobilizing is a potential cost that is not included in this tech-
nique. If a technology is idle for a period, there may be some cost
incurred to start using it again, and this cost would have to be
added to the model. However, the fact that a technology is used in
nonadjacent areas does necessarily mean those areas are not
treated sequentially. Here the solution form will be developed in
a descriptive form with an example, leading to a mathematical
formulation.

A contaminated site has been divided into a series of discrete
cells, which must be traversed at a minimal cost. The problem can
be visualized as a three-dimensional stack of checkerboards. The
squares on the bottom board correspond to the cost matrix to
remediate the cells of the site with some Technology A. The
squares on the second board correspond to the cost matrix to
remediate the same site with Technology B and so on. See Fig. 1
for a depiction of three technologies in four sectors. The check-
erboards each represent the same site, the difference is the chosen
technology. It is possible to move from square to square on any
one board, or between any pair of checkerboards. There is a cost
to move from board to board. Changing boards is analogous to
changing remediation technologies and incurring the mobilization
and demobilization costs of that new technology.

Consider a scenario with m candidate technologies, denoted tj,
j=1, . . . ,m, and a site divided into n sectors, si, i=1, . . . ,n. There
is also a cost matrix mdj, j=1, . . . ,m, that is the cost of bringing
a technology to the site, and includes mobilization, demobiliza-
tion, treatability studies, and other one-time costs �hereafter all
these costs will be referred to as mobilization�. Matrix cij�cost
of using Technology tj in Sector si excluding the costs of
mobilization.

For example, assume a simple scenario with three technologies
and four sectors. The cost information is given in Table 1. Thus
Technology A costs $400 to bring to the site. To remediate Sector
3 with Technology B would cost $200, if B is already at the site.

If a technology were not applicable to a particular sector, the cost
can be entered as a number so high that it never enters the optimal
solution.

Each sector of the site will be a stage in the solution. A stage
is a decision point; in this case the decision is whether to continue
with the current technology on the site or to change to a different
one. At each stage there are several distinct states that are pos-
sible, at least one for each combination of technologies.

The next problem to address has to do with mobilization costs.
If a large site is divided into many sectors, it is possible that the
optimal trajectory would be to switch back and forth among tech-
nologies. If the solution method does not explicitly allow for this,
this would cause them to incur the mobilization more than once.
We need a method that either allows nonsequential solution and
goes through all sectors or keeps track of which technologies
have been mobilized.

The solution pursued here is to solve the problem sequentially,
from the last cell to the first, and remember which technologies
have been mobilized. This is accomplished by allowing more
states at each stage of the solution as described in the following.

We define f �i�
* as the cost of the optimal policy at Stage i.

Beginning at the last cell to be remediated we will work toward
the best starting policy. f

0
* is defined as $0, as it represents the end

of the model.
In order to account for all the possibilities that a technology

may or may not have been previously mobilized, additional states
are introduced. At f1 we could choose to use any of technologies.
For each technology we either have or have not used it previ-
ously. For three technologies there are eight combinations, calcu-
lated in the following as a series of combinations:

3C0 + 3C1 + 3C2 + 3C3 = 1 + 3 + 3 + 1 = 8 �5�

In fact for any number of technologies m there are 2m combi-
nations. Now there are at least eight states possible at each stage
in our example.

If we are in Stage 1, searching for the best policy in Cell 4, we
must calculate each possible state. For example, if A is used in
Cell 4, we may have arrived there by using A, or combinations
AB, AC, or ABC, so the mobilization cost has been incurred and
the cost is only for the remediation, $300. If we have used only B
or C, or BC �or none� then the cost would be $300 plus the $400
mobilization cost of A for a total of $700. Eight possible states for
each of the three technologies brings the total number of states at
each stage in the example to 24. For any number of technologies
m the number of states at each stage is given by

states per stage = m � 2m �6�

The top of Table 2 shows the results for Stage 1 �Sector 4� or
f1. The calculation is in the following:

f1 = cij + �mdj , j not mobilized

0, j mobilized
� �7�

Next we move to Stage 2 and perform similar calculations, and
then add the minimum of the appropriate column from Stage 1.
The particular technology being considered at this stage is re-
ferred to as j, and J will refer to the technologies �if any� already
mobilized. The function will now be f ij�J�, meaning the optimal
cost of using Technology j at Stage i given that the set of Tech-
nologies J has been already mobilized. It is worth recalling that as
this formulation is solved from the last sector to the first it is not
known at this point which technologies have been previously mo-
bilized. Eq. �8� is given as

Table 1. Example Cost Data

Technology Mobilization

cij

1 2 3 4

A $400 $700 $400 $300 $300

B $250 $500 $350 $200 $100

C $450 $150 $200 $300 $400

Fig. 1. Methodology model
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f ij�J� = cij + min�f i−1�J � j�� + �mdj if j not mobilized

0 if j mobilized
�

�8�

The results of this calculation for f2 are also in Table 2. For
example, to use Technology A, if only A has been used previ-
ously, we take the cost cA3 �300� and then find the minimum of
the column in the upper part of the table �f1� corresponding to
J=A�A �=A�. The minimum of �300, 350, 850� is 300, so
f2A�A� equals $300+$300=$600. To use B having only used C
previously would require mobilizing B �250�, using B �200�, then
finding the minimum of the column in f1 corresponding to J
=B�C �=BC�, which is the minimum of �700, 100, 400� equals
100. Therefore f2B�C� equals $250+$200+$100=$550.

The final calculations for this example are f4 shown in the
lower part of Table 2. The minimum cost must be found in the
“None” column, because we are now at the beginning of the
project with no technologies mobilized. The minimum is equal to
$1,350. The other columns are not required; they are included for
consistency.

To find the sequence that corresponds to the minimum cost, it
is necessary to trace back through the calculations. The optimum
cost �f

4
*� in the None column is in the C row, meaning that the

optimum policy begins with Technology C. Subtracting the mo-
bilization �$450� and Sector 1 remediation costs �$150� for C
from $1,350 gives us $750, the optimum cost for f

3
*. Under f3 we

look in Column C �which is the only technology on site at this
point� and find $750. This corresponds to Row C again, meaning
that the second sector should also be treated by Technology C.
Subtracting the remediation cost of Sector 2 using C �$200� gives
$550, which is f

2
*.

We again go to the C column under f3 �still the only technol-
ogy mobilized� and find that $550 occurs in the B row. To follow
the optimum trajectory we use Technology B in Sector 3. Sub-
tracting the mobilization �$250� and Sector 3 remediation costs
�$200� for B gives the optimum cost for f

1
*, $100. This is found

by looking in the BC column under f1, as we now have both B
and C mobilized. One hundred dollars is in Row B, making B the
technology to use in Sector 4. The B remediation cost is $100,
taking us to $0, the end �f0�. Therefore the optimal trajectory or
policy is C-C-B-B, at a cost of $1,350.

This example took 96 calculations to find the optimal policy. It
could also have been solved by complete enumeration. Each sec-
tor could use any one of the three technologies, so the number of
combinations is three raised to the fourth power, or 81. However,
as the size of the problem increases, dynamic programming be-
comes much more efficient.

Consider a scenario with six technologies and 12 sectors.
Using Eq. �6� and multiplying by 12 sectors we get 4,608. For
complete enumeration there are 12 sectors, each of which could
be remediated with any of six technologies. Complete enumera-
tion requires 612 calculations, about 2.18 billion. This is a ratio of
1:472,000, representing a huge savings in computation time.

Another advantage of DP over some other types of optimiza-
tion is that DP becomes more efficient when constraints are
added. This can be used to our advantage in the problem consid-
ered here.

As the detail of the problem grows, as happens when the site is
divided into more sectors, the number of equations to be solved
increases. This is a linear increase. In the case of six technologies,
each sector �stage� added will require 6�26=384 calculations.
This may become a problem eventually, but we can increase the
level of detail by four and expect to quadruple the number of
equations and roughly quadruple the computing time.

The problem occurs when more technologies are entered into
the solution set. From Eq. �6�, the number of equations to calcu-
late at each stage is a function of 2 raised to the number of
technologies, times the number of technologies. This means that
the solution equations more than double for each additional tech-
nology. Six technologies take 384 equations per stage, seven tech-
nologies require 896, and 12 require 49,152 calculations at every
stage.

We can mitigate this problem by adding a constraint. It does
not seem reasonable that all of the technologies will be mobilized
to the site. The cost of mobilizing, running treatability studies,
decontaminating equipment, etc., would make this unlikely.
Therefore, we can constrain the solution space to some subset of
the technologies under consideration.

In the case of 12 technologies, if we limit the number of al-
lowed technologies in the solution to three, the solution space in
decreased considerably. The number of equations is found by cal-
culating the combinations of 12 taken zero, one, two, and three at

Table 2. Example Calculations

F1

Previously mobilized

A B C AB AC BC ABC None

A 300 700 700 300 300 700 300 700

B 350 100 350 100 350 100 100 350

C 850 850 400 850 400 400 400 850

F2

A 600 800 1,000 400 600 800 400 1,000

B 550 300 550 300 550 300 300 550

C 1,050 850 650 850 600 400 400 1,100

F3

A 950 1,100 1,350 700 950 1,100 700 1,350

B 900 650 900 650 900 650 650 900

C 1,200 950 750 950 750 500 500 1,200

F4

A 1,600 1,750 1,850 1,350 1,450 1,600 1,200 2,000

B 1,400 1,150 1,250 1,150 1,250 1,000 1,000 1,400

C 1,350 1,100 900 1,100 900 650 650 1,350
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a time as shown in Eq. �8�. This represents an order of magnitude
reduction in the solution space required to solve the equations

12 � �12C0 + 12C1 + 12C2 + 12C3� = 12 � �1 + 12 + 66 + 220�

= 3,588 �9�

Returning to the example, it is worth noting another point. If
we had developed an algorithm which simply chose the least
expensive next step we would have reached a suboptimal solu-
tion. The first choice, among A, B, and C, would have resulted in
the selection of C as the least expensive. From there we would
proceed to C-C as the second choice. The third choice would be
C-C-C, and finally we move to C-C-C-B at $1,450, a cost greater
than that on the optimal path, C-C-B-B at $1,350.

The reason that the result is not optimal is because at the third
stage it is not known what will happen in the fourth stage. If it
were known that B would be mobilized anyway, then the choice
would be to use B in the third stage �C-C-B�, and proceed with B
in the fourth stage. As this is unknown, the mobilization cost of B
spoils the overall optimum by allowing the solution to be dis-
tracted to a local optima. The DP algorithm avoided this pitfall.

Implementation and Illustration of the Model

Section Introduction

To illustrate the use and results of the SORTS model an applica-
tion of the model to a simulated remediation site was performed.
This section was developed in conjunction with the model devel-
opment to aid in eliminating problems that might be encountered
in an application.

Site Description

The site data used for this illustration are based on information
from a site known as the acid pit. The acid pit is located at Idaho
National Engineering Laboratory, and is part of the radioactive
waste management complex �RWMC�. The RWMC covers an
area of 144 acres, and has been used for waste disposal since
1952. The acid pit is about 90 feet wide by 180 feet long, by
15 to 21 feet deep �Lugar and Rice 1992�. The pit received a
variety of organic, inorganic, and radioactive wastes. Accurate
records are limited as to the composition and quantities of wastes.
Clearly this type of site demands careful analysis and planning
prior to any remedial action.

For illustration purposes, a simplified site was developed. This
hypothetical site has a variety of contaminants, each of which
poses a different challenge to remediate. The illustration site is
25 m wide by 150 m long, and a uniform 5 m deep. It has been
divided into 24 equal sized sectors, each 12.5 m2 and 5 m deep,
for a sector volume of 781.25 m3. At a density of 2.0 g /cm3, each
sector contains over 1.56�106 kg of soil, or about 1,722 t. The
site is contaminated with organic, metal, and radioactive pollut-
ants. TCE, lead, cadmium, and radium are the contaminants of
interest.

The distribution of contaminants across the site is such that not
all of the sectors contain all of the contaminants. Each sector is
contaminated by at least TCE, and some also contain lead, cad-
mium, or radium, or a mixture as shown in Fig. 2. Geostatistics
were used to determine a mean value for each contaminant in
each sector.

Technology Cost Estimates

Six technologies were chosen for the illustration. The technolo-
gies are: in situ vitrification, incineration, soil vapor extraction,
stabilization/solidification, bioremediation, and soil washing. Cost
estimates were developed for each of the candidate technologies.
The costs vary with the contamination level, and are reported in
detail in Showalter �1994�.

Model and Implementation

The flowchart in Fig. 3 shows the methodology of the SORTS
model. Remediation projects begin with a phase of data gathering.
These data are the first element in the model presented here.

Fig. 2. Contamination by block

Fig. 3. SORTS methodology flow sheet
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Once the site data are available, geostatistical analysis is used
to divide the site into sectors. In each sector, a mean value for
each contaminant is calculated. The site in the illustration has
been divided into 24 sectors.

A set of candidate technologies must be determined. The set
should include all technologies that are applicable to the contami-
nants at hand. Cost and performance data for each technology
must be available.

The contaminant levels and the cost functions are then com-
bined to determine the cost to remediate each cell with each tech-
nology. Nonfeasible options such as bioremediation of heavy
metals can be assigned arbitrarily high values �$1�1010� so that
they never enter the solution.

The cost data are then entered into a dynamic programming
algorithm. The DP algorithm involves calculating from the final
sector to the first sector one step at a time. A second pass is used
to trace the optimal path �trajectory� for remediation.

Once the optimal sequence of technologies has been deter-
mined, the decision maker can vary parameters to see the influ-
ence on the optimal trajectory. This sensitivity analysis will help
to point out potential problems and assist in determining areas
where more information is required. If it is believed that the cost
estimates are accurate to within +20 to −30%, then the costs of
technologies that are in the solution can be increased by 20%, and
the costs of technologies not in the solution can be decreased by
30% to see if the previously excluded technologies will then enter
the optimal solution. Analyses can be performed until the decision
maker is confident in a particular sequence of technologies.

The optimization is done in a spreadsheet. Contaminant levels
are entered in one page. Each of the candidate technologies is on
a page detailing its costs and applying those costs to the contami-
nant levels to come up with a cost for each sector.

The cost information is then passed to a page that performs the
dynamic programming calculations to find the optimal trajectory
in terms of cost. The optimal cost and trajectory are finally passed
on to a page that is used to view the optimal trajectory and to
perform parameter studies. The mobilization and operating costs
of the various technologies can be adjusted up or down individu-
ally. For example, the mobilization cost of a technology could be
reduced to 75% of the estimate, whereas its operating costs are
decreased to 90% of the original estimate. This allows the deci-
sion maker to quickly adjust the costs up or down without chang-
ing the original estimate.

Results

With the costs set at 100% of their estimated value, the cost of
mobilization of each technology is listed in Table 3. The cost to
remediate each cell is shown in Table 4. Cells that have �NA� as
a cost cannot be remediated by that particular technology. Where

this is the case, a very large cost �$100 million� is used in the
optimization.

Only one of the technologies, in situ vitrification, is capable of
handling all of the contaminants. The cost to do the entire site by
ISV would be $10.6 million. The dynamic programming algo-
rithm will find the optimal cost, which will not exceed the ISV
cost.

In order to solve this problem efficiently, the number of tech-
nologies in the solution has been constrained to four of the six
total. If the optimal solution requires four technologies, then the
problem can be checked using five technologies to see if there is
an improvement. Recalling Eq. �6�, the number of equations to
solve by dynamic programming when 24 sectors are used is

24 � �6 � �6C0 + 6C1 + 6C2 + 6C3 + 6C4��

= 24 � 6 � �1 + 6 + 15 + 20 + 15� = 8,208

The complete enumeration of the possibilities would require
624 calculations, about 4.7 quintillion �4.7�1018�. At 1 billion
calculations/s, complete enumeration would require 150 years to
solve. The dynamic programming algorithm can be solved on a
personal computer in seconds.

With the costs of the technologies at 100% of their estimated
value, the optimal sequence and the minimum cost are as shown
in Table 5. Note that the constraint of four technologies has not
affected the solution, which uses three technologies.

The first parameter changed in the sensitivity analysis is to
change the mobilization costs. This may change the optimum path
by making it less expensive to bring a new technology to the site.
However, even if the mobilization costs are changed to zero the
optimal trajectory �sequence of technologies� is unchanged, at a
cost of $2,263,165.

The next step is to vary the operating costs and test the results.
To do this, the costs for technologies already in the optimal path
are increased, and the costs for technologies not in the optimal are
decreased. Increasing costs of excluded technologies or decreas-
ing costs of included technologies would not affect the optimal
mix of technologies, however the total cost would decrease.

In an actual application, the relative accuracy of the estimates
might be known. If incineration had been used recently on a simi-
lar site, the estimate might be expected to be within 10%. A new
technology might only be within 50% of the estimate. A straight
+20% to −30% range has been applied to the technologies in this
illustration. Table 6 shows the results of increasing the operating
costs of previously included technologies and decreasing the op-
erating costs of the previously excluded technologies. The result
of changing the costs is that D, solidification/stabilization, has
now entered the optimal solution, replacing soil washing. The
decision maker should look at the estimates for both solidification
and soil washing to determine the accuracy.

Further sensitivity studies were run. Each of the technologies
included in the original solution �in situ vitrification, bioremedia-
tion, and soil washing� had their costs increased one at a time,
holding the other technologies costs constant at 100%, until that
technology was no longer economical. Then each of the technolo-
gies that was not included in the original solution �incineration,
soil vapor extraction, and solidification/stabilization� had their
costs decreased one at a time, holding the other technologies costs
constant at 100%, until that technology became economical.

The results of this sensitivity analysis show that some tech-
nologies are clear winners in terms of cost, and that even fairly
large errors in estimation of their costs will not effect whether
they are the best choice. In the case of other technologies the

Table 3. Mobilization Cost

Technology Mobilization cost

In situ vitrification $484,269

Incineration $402,360

Soil vapor extraction $103,325

Solidification/stabilization $110,000

Bioremediation $299,325

Soil washing $145,000
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choice is not so clear, and more accurate estimates may be re-
quired to make the best decision.

Bioremediation is one of the choices that the decision maker
can be confident in. Even increasing the costs to 200% of the
original estimate did not cause bioremediation to leave the opti-
mal solution. Only when soil vapor extraction was decreased to
30% of its estimate and bioremediation was increased to 150% of
its estimate did SVE become more attractive than bioremediation.
Cost estimates should be accurate within a smaller range than
this.

In situ vitrification of the radioactive wastes was also a clear
choice. Incineration coupled with long-term storage must be re-
duced to about 40% of its original estimated cost before it be-
comes competitive with in situ vitrification.

As previously discussed, the choice between soil washing and
solidification is not as clear. If soil washing is increased to 130%
of its original estimated cost or if solidification is decreased to
75% of its original estimate, then solidification becomes viable.
There may be need for further cost studies of these two technolo-
gies prior to making a decision.

Conclusions and Recommendations

A model has been developed that can aid in selection of cost
effective technologies for environmental remediation. SORTS
analyzes the site investigation data, then estimates the cost and
selects an optimal sequence of technologies for remediation. Sen-
sitivity analysis allows the decision maker to analyze “what-if”
scenarios.

Discussions with industry experts and a search of the literature
did not find cost-based optimization approaches to selecting tech-
nologies for environmental remediation projects. The SORTS
model is one way to give structure to the cost estimating compo-
nent of selecting a viable remediation sequence. The magnitude of
the cost of environmental remediation projects �$400 billion for
the DOE alone� dictates that cost should be given strong consid-

Table 4. Cost of Remediation by Sector

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6

ISV $420,564 $420,564 $420,564 $414,316 $414,316 $414,316

Incineration $338,366 $338,366 $338,366 $338,366 $338,366 $338,366

SVE $230,689 $230,689 $230,689 $230,689 $230,689 $230,689

S/S $198,030 $198,030 $198,030 $198,030 $198,030 $198,030

Bioremediation $41,377 $41,377 $41,377 $41,377 $41,377 $41,377

Soil wash $148,523 $148,523 $148,523 $148,523 $148,523 $148,523

Cell 7 Cell 8 Cell 9 Cell 10 Cell 11 Cell 12

ISV $414,316 $414,316 $420,564 $433,060 $433,060 $433,060

Incineration $338,366 �NA� �NA� $338,366 $338,366 �NA�

SVE $230,689 �NA� �NA� $230,689 $230,689 �NA�

S/S $198,030 $198,030 $198,030 $198,030 $198,030 $198,030

Bioremediation $41,377 �NA� �NA� $41,377 $41,377 �NA�

Soil wash $148,523 $148,523 $148,523 $148,523 $148,523 $148,523

Cell 13 Cell 14 Cell 15 Cell 16 Cell 17 Cell 18

ISV $433,060 $433,060 $420,564 $420,564 $414,316 $414,316

Incineration $338,366 $338,366 $338,366 $338,366 $338,366 $338,366

SVE $230,689 $230,689 $230,689 $230,689 $230,689 $230,689

S/S $198,030 $198,030 $198,030 $198,030 $198,030 $198,030

Bioremediation $41,377 $41,377 $41,377 $41,377 $41,377 $41,377

Soil wash $148,523 $148,523 $148,523 $148,523 $148,523 $148,523

Cell 19 Cell 20 Cell 21 Cell 22 Cell 23 Cell 24

ISV $414,316 $414,316 $420,564 $420,564 $420,564 $454,331

Incineration �NA� �NA� �NA� �NA� �NA� $1,554,299

SVE �NA� �NA� �NA� �NA� �NA� �NA�

S/S $198,030 $198,030 $198,030 $198,030 $198,030 �NA�

Bioremediation �NA� �NA� �NA� �NA� �NA� �NA�

Soil wash $148,523 $148,523 $148,523 $148,523 $148,523 �NA�

Table 5. Optimal Control Trajectory

Cell 12: Soil washing Cell 24: In situ vitrification

Cell 11: Bioremediation Cell 23: Soil washing

Cell 10: Bioremediation Cell 22: Soil washing

Cell 9: Soil washing Cell 21: Soil washing

Cell 8: Soil washing Cell 20: Soil washing

Cell 7: Soil washing Cell 19: Soil washing

Cell 6: Bioremediation Cell 18: Bioremediation

Cell 5: Bioremediation Cell 17: Bioremediation

Cell 4: Bioremediation Cell 16: Bioremediation

Cell 3: Bioremediation Cell 15: Bioremediation

Cell 2: Bioremediation Cell 14: Bioremediation

Cell 1: Bioremediation Cell 13: Bioremediation

Note: Minimum cost: $3,191,759.
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eration. Even if public pressures are the primary factor in select-
ing the remediation method, SORTS can help to show the cost of
appeasing the public.

It has been shown that if the waste site has significant variation
in the contaminants from place to place, it may be advantageous
to break the site into discrete cells. The remediation of each cell
can then be considered separately.

Sensitivity analysis of the costs can be used to better under-
stand the estimate for remediation. Costs that require better defi-
nition can be identified. The illustration showed that some
technologies may be clearly more economical than the others con-
sidered. Other choices are more sensitive to errors and uncertain-
ties in their estimation.

The SORTS model should be considered when the site is fairly
large and the contaminants vary in concentration and composition
across the site. Possible sites fitting this description might include
a series of pits, or a waste trench that also has had a large spill in
one area.

Recommendations

The lack of cost data is one of the major limitations to the appli-
cation of this research. It is difficult to make estimates of the
remediation cost. Further work is required in the area of environ-
mental remediation cost estimation. Parametric cost estimation
relies on historical records, which are rare in this field. A concen-
trated effort could have some success in creating cost functions.
Tools such as the methods described herein can then be used to
run sensitivity analysis or simulations to determine if the costs are
sufficiently precise to discriminate between technologies.

Geostatistics can determine a mean and standard deviation in
contaminant levels for each cell. It is possible to generate multiple
equiprobable scenarios using Monte Carlo simulation. By running
simulations and optimizing the results, confidence limits for the
cost of particular combinations of technologies could be devel-
oped. This would help in forecasting more accurate schedules and
cost, thereby improving the technology selection process.

The process could be integrated into a geographic information
system �GIS� to analyze the site investigation data and select the
optimal path through the remediation. The ability to display the
contaminant levels graphically would be an added benefit of using
a GIS.

The selection of the grid spacing �sector volume� under the
geostatistical analysis requires further analysis. For the illustra-
tion, spacing was chosen without a detailed analysis of its impact.
ISV, for example, operates on a discrete volume of soil in each set
up. Grid spacing should consider the operating characteristics of
ISV to treat it fairly. For this research it was assumed that an
expert could make the decision on grid spacing and weigh the
tradeoffs.

SORTS can also be extended to look at the risks involved in
remediation. Geostatistics provide a measure of the uncertainty
involved in site sampling. Linking uncertainties in the technologi-
cal capabilities of the remediation methods with the uncertainty in
the contamination data will allow analysis of the risk of failure in
the remediation project. If the consequences of failure can be
translated into a monetary figure, then the optimization would be
straightforward. Otherwise a weighting scheme must be devel-
oped and methods of multiattribute optimization applied.

Finally, it must be remembered that this method is another tool
in the toolbox. It cannot make the decision of which technology is
the best suited to remediate the site in question. It can hopefully
help to identify good candidates for the remediation, and perhaps
help identify areas of cost estimation that need more work.
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Table 6. Sensitivity Analysis

A:ISV B:Incineration C:SVE D:S/S E:Bioremediation F:Wash

Mobilize
�%�

100 100 100 100 100 100

Operate
�%�

120 70 70 70 120 120

1;E 2;E 3;E 4;E 5;E 6;E 7;E 8;D 9;D 10;E 11;E 12;D

13;E 14;E 15;E 16;E 17;E 18;E 19;D 20;D 21;D 22;D 23;D 24;A

Note: Total remediation cost: $2,263,165.

JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT © ASCE / OCTOBER 2008 / 827




